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Abstract: Surface electromyography (sEMG) is a common sensing modality for volitional
control of robotic exoskeletons for the hand. However, neuromuscular fatigue can inhibit the
reliability of sEMG-based control of robots, especially during prolonged use. Fatigue-awareness
is needed for sEMG-based robotics to be viable for long-term motor augmentation, assistance,
and rehabilitation. Prior works have explored time-frequency sEMGmetrics indicative of fatigue,
which are computationally expensive. Alternatively, sEMG analysis in the ‘synergy’-domain
can provide reliable, lower-dimensional metrics of neuromuscular fatigue from spatio-temporal
patterns in muscle activation. Still, while much research effort has been expended towards
synergy-domain sEMG analysis of lower limbs, work remains to establish the viability of synergy-
domain sEMG analysis for fatigue-awareness during hand poses. In this manuscript, we present
the assessment of neuromuscular fatigue via synergy-domain sEMG analysis in a pilot study with
five healthy participants. We obtain time-frequency benchmarks and synergy-domain metrics of
fatigue from sEMG data collected from the Flexor Digitorum Profundis, Flexor Pollicis Longus,
and Extensor Digitorum Communis muscles during hand poses to illustrate that synergy-domain
analysis is a reliable method to assess hand neuromuscular fatigue. We thereby show that
synergy-domain sEMG analysis is viable for fatigue-aware hand exoskeleton control.
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1. INTRODUCTION

Robotic exoskeletons have been proposed to augment, as-
sist, and restore hand function during prolonged exertion
or after neuromuscular impairment. Force, torque, and po-
sition sensing have been explored for exoskeleton control,
but one such modality, surface electromyography (sEMG),
provides measurements of wearer neuromuscular activity
ahead of movement (Singh et al. (2012)). In applications
ranging from motor rehabilitation to astronaut EVA as-
sistance, sEMG-based robotics can assist in preserving
human health and safety (Rose et al. (2021)).

However, sEMG-based characterization accuracy is sen-
sitive to neuromuscular fatigue as the central nervous
system (CNS) alters motor control after prolonged exer-
tion. Time-frequency metrics assessing fatigue have taxing
computation, poor signal-to-noise ratio, and severe losses
in reliability with neuromuscular fatigue (Madden et al.
(2021); Ortega-Auriol et al. (2018); Singh et al. (2012);
Lin et al. (2020); Zeng et al. (2021)).

Robust exoskeleton control in the presence of fatigue
remains an open question, and without a solution, the risk
of injury in prolonged human-robot interaction remains
high (Madden and Deshpande (2017); Lin et al. (2020)).
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1.1 Background

Time-frequency analysis has been used to detect neuro-
muscular fatigue from sEMG data. Analysis in this do-
main provides metrics that are robust to statistically non-
stationary ‘dynamic’ muscle contractions, revealing trends
in spectral metrics including signal energy (Madden and
Deshpande (2017)) that directly correlate to neuromuscu-
lar fatigue. However, this method requires time-consuming
domain transforms and computation, requiring large mem-
ory storage capabilities which make it impractical in many
human-robot interaction paradigms.

Neuroscience approaches have suggested ‘synergy’-based
analysis of muscle activity data to improve sEMG-based
control during fatigue (Overduin et al. (2008)). In this do-
main, the CNS is thought to coordinate muscle activation
by ‘exciting’ a small set of motor ‘primitives’ (Scano et al.
(2018)) to excite groups of muscles that act synergistically
to produce movement (Ortega-Auriol et al. (2018)). These
primitives are developed by the CNS over time, organized
and maintained subconsciously, such that they remain
unaffected by transient influences like muscle fatigue.

Prior studies have shown that analysis of the structure and
magnitude of these synergies in sEMG data (Liu and Wu
(2010); Yağmur et al. (2017)), can enable low-dimensional
analysis of muscle activity that remains robust to neu-
romuscular fatigue. Synergy-domain analysis and on-line
classification of muscle signals thus provide promising av-
enues to robotic assistance over long durations.



1.2 Motivation

Synergy domain sEMG analysis of motor function has
been well-explored for lower-limb muscle activity (Liu
and Wu (2010); Yağmur et al. (2017)). Their utility in
describing hand grasps has also been explored in other
works (Alessandro et al. (2013); Overduin et al. (2008)).

However, there remains a significant gap in the characteri-
zation of muscle fatigue in functional hand grasps through
synergy domain analysis. In this work we advance the
state of the art by examining muscle fatigue during hand
activity in the synergy domain, an understudied area of
research that seeks to establish the practical utility of
hand exoskeletons (Rose et al. (2021); Lin et al. (2020))
by reliably assessing muscle fatigue (Tresch et al. (2006)).

Through a pilot study (Section 2), we validate partici-
pants’ muscle fatigue through force and time-frequency
analysis. In Sections 3 and 4, we compare these results
to analysis of lower-dimensional metrics in the synergy
domain, demonstrating the separability of synergy domain
effects associating increasing muscle fatigue and variation
in hand pose. Concluding the analysis of this study, in
Sections 4 and 5 we validate that synergy domain analysis
of sEMG data enables reliable fatigue characterization
and intent detection between hand poses. This is a first
step towards a neuromuscular control and intent detection
system for the hand that remains robust to fatigue (Fig. 1).
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Fig. 1. Our goal is to assess sEMG data through synergy-
domain analysis (red pathway), rather than time-
frequency methods (pathway shown only in gray),
which are obscured by muscle fatigue.

2. METHODS

The goal of this analysis was to validate the use of synergy
domain analysis in identifying muscle fatigue in the power
grasp, as well as to assess the separability of synergy
domain features for four common hand grasps (Fig. 2).
The experimental protocol employed in this study was ap-
proved by Auburn University’s Institutional Review Board
(22-080 EP). Per this protocol, five healthy males between
20 and 30 years of age with no known musculoskeletal or
neuromuscular injuries participated in a voluntary study
without compensation. The participants self selected their
dominant hand for the study and provided written consent
prior to the experiment.

2.1 Experiment Design

In this study, participants performed the Power Grasp
(PG), Lateral Pinch (LP), Two Finger Pinch (TFP), and
Three Finger Pinch (TFP) while holding a fluid-filled bulb

dynamometer (Fig. 2). A pressure sensor connected to the
dynamometer via a flexible tube was used to measure grasp
pressure. As pressure-based hand dynamometry is a stan-
dard approach to measuring quasi-isometric grasp forces
in rehabilitation medicine, the contractile dynamics of the
dynamometer could be neglected (Maher et al. (2018)).
To measure muscle activation signals, a portion of partic-
ipants’ forearm hair was removed using an electric razor,
and single Delsys Trigno sEMG electrodes were applied
to the participants Flexor Digitorum Profundis (FDP),
Flexor Pollicis Longus (FPL), and Extensor Digitorum
Communis (EDC) muscles.
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Fig. 2. Participants performed four hand poses, Power
Grasp (PG), Lateral Pinch (LP), Two Finger Pinch
(TFP), and Three Finger Pinch (TFP), while holding
a pressure-sensing bulb dynamometer. Delsys Trigno
sEMG Electrodes were placed at the FDP, FDL, and
EDC muscles to measure muscle activation.

Two sets of trials were conducted, the first of which
allowed for examination of the effects of fatigue during
power grasp. Participants were instructed to squeeze the
dynamometer as tightly as possible for three 60 second
trials with 60 second rests in between each trial, to
determine their maximum voluntary contraction (MVC)
grasp pressure. Following a 60 second rest, participants
were instructed to the hold the power grasp at a level of
70% of their MVC grasp pressure and were provided visual
feedback via a live sliding plot window on a computer
display. They were instructed to follow the visual feedback
(a horizontal line denoting 70% MVC superimposed over
a sliding window plot showing their grasp pressure) to
maintain their exertion for three 60 second trials with
60 second rests between each trial. Immediately following
each trial, participants were asked to provide a subjective
estimate of their hand/forearm muscle fatigue as a score
from one to ten with ten being extreme fatigue.

Subsequently, following 60 seconds of rest, after which
participants recovered and reported no fatigue, the second
set of trials were conducted to examine the separability
of hand poses in the synergy-domain. Participants were
asked to perform each of four hand poses (Fig. 2) for
30 seconds each, with 60 second rests in between each
trial. Participants were asked to maintain grasp force and
grasp timing to approximate activities of daily living (ie.
holding a doorknob (power grasp), holding a door key
(lateral pinch), picking up an object (two finger and three
finger pinch). Visual feedback was provided as a live sliding
plot window on a computer display and participants were
asked to pace hand poses to one second intervals. Muscle
activity in the fatigue trials and for the hand pose trials
was recorded via Delsys data acquisition hardware at an
average sampling rate of 1111 Hz.



2.2 Acquisition of sEMG Metrics

Three sets of metrics were obtained fromt the sEMG data
and are presented in this study: 1. Time-frequency bench-
marks of fatigue, 2. Synergy-domain metrics of fatigue,
and 3. Synergy-domain metrics of pose separability.

Firstly, time-frequency metrics were acquired to estab-
lish the occurrence of fatigue. The Choi-Williams bilin-
ear distribution, C, over time (t) and frequency (ω) was
obtained (Eqn. 1) from the sEMG signal, x, using a signal-
independent binomial kernel, Φ(θ, τ), for interference re-
duction (Eqn. 2). A well-established metric of fatigue,
the instantaneous energy of the distribution, ai(t), was
obtained through calculation the zero-order moment of
C in 1 second epochs (Eqn. 3) (Overduin et al. (2008);
Madden and Deshpande (2017)) and was smoothed with
a first order sliding window Savitzky-Golay filter (Fig. 4).

C =

+∞∫∫∫
−∞

x(u+
τ

2
)x*(u− τ

2
)Φe−j(θ(t−u)+τω)dτ du dθ (1)
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√∫
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Second, synergy-domain metrics of fatigue and pose sepa-
rability were obtained via bi-linear matrix decomposition.
Non-negative matrix factorization (NMF) was selected for
improved performance over principle components analy-
sis, factor analysis, and independent component analysis
across variance, occurrence of agreement, and dissimilar-
ity for extracting synergies from isometric and dynamic
muscle activity (Rabbi et al. (2020); Tresch et al. (2006)).
NMF (Eqn. 4) and sEMG signals, V , were factored into
W and H, where W contains activation coefficients of
motor primitives, and H was found by error minimization
(Eqn. 5). Rank three was selected for the NMF algorithm,
signifying the selection of three muscle synergies, which
described 85.51% of the Variance Accounted For (VAF) in
the sEMG signals (Eqn. 6) (Tresch et al. (2006)).

V = W ·H (4) ||V −W ·H|| = 0 (5)

V AF = 1− ||(V −W ∗H)2||
||V ||2

(6)

Finally, we demonstrate that synergy activation, W , lower
in dimensionality than motor primitives, H, retains sep-
arable features that remain unaffected by neuromuscular
fatigue (Fig. 6), becoming an interesting target for classifi-
cation with minimal fatigue-related distortion even during
intense muscle fatigue. Classification of synergy primitives
during different phases of movement can also be carried
out via machine-learning methods including Support Vec-
tor Machines (SVM), as well as neural networks, and is
explored in other works (Zhao et al. (2021)).

3. RESULTS

Participant muscle fatigue was established with grasp pres-
sure, measured throughout the three 70% MVC trials (as-
sumed quasi-isometric so that muscle body dynamics are
neglected (Madden et al. (2021))), and subjective ratings
of fatigue (SRFs) in the hand and forearm from one to
ten. Participant normalized grasp pressures (nGP) from
each of the three fatigue trials were recorded as a percent-
age of 70% MVC grasp pressure threshold (Fig. 3). For
one characteristic participant, nGP fell by approximately
10.7% from the first trial and third trial, and SRF for all
participants increased by approximately 50% (Fig. 3).
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Fig. 3. The mean normalized grasp pressure for a charac-
teristic participant (nGP, Top) decreased by approx-
imately 11%, and the rated fatigue (SRF, bottom),
increased by approximately 50% for all participants,
indicating fatigue-related functional deficits.

Subsequently, instantaneous amplitude, ai(t) of the time-
frequency distribution of sEMG data was calculated in 10
ms epochs. This metric increased throughout each trial,
with rates of increase also increasing between trials (Fig. 4)
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Fig. 4. Increasing instantaneous amplitude of the sEMG
time-frequency distribution for EDC, FPL, and FDP
muscles illustrate fatigue during the trials. Sixty sec-
ond rests periods between trials are not shown.



Finally, synergy-domain metrics, including motor primi-
tives for three muscle synergies and their corresponding
activation coefficients, were collected for the fatigue trials
and for the four hand poses in 10 ms epochs. From these
metrics, the average activation coefficient for all partici-
pants at the start and end of each of the three trials were
collected, and a decreasing trend in activation coefficients
was observed (Fig. 5). Further, the structure of each of the
three motor primitives for all participants were averaged
for each trial, and it was found that the motor primitives
did not vary significantly between trials (Fig. 5). A 3-
dimensional space was constructed from the activation
coefficients of each synergy for the for hand poses, allowing
for graphical indication of the separability of four hand
poses as a function of synergy (Fig. 6).
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Fig. 5. Activation coefficients for each synergy (lines)
generally decreased by 5-10% between the start and
end of each trial, while the synergy structures (bars)
did not vary significantly between trials.
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Fig. 6. 3D boundaries built using synergy activation coef-
ficients from all participants for four poses is shown
along with regression lines from singular value decom-
position, illustrating synergy-domain separability.

The synergy compositions of each pose, illustrated graph-
ically in Fig. 8, is clarified in Fig 7, indicating dimensions
and sub-features that can be classified and analyzed for
intent detection. Within this 3-dimensional synergy-space,
it is also possible to quantify the changes in activation for
the synergies composing the power grasp (PG) hand pose
before and after fatigue trials (Fig. 8). Within this space, it
was evident that significant reductions in synergy activa-
tion occur with fatigue, but that the synergy composition
and structure did not significantly vary, supporting the
results of the 2-dimensional analysis shown in Fig 5.

In summation, reductions in mean synergy activation were
when fatigued and systematic variation in synergy activa-
tion between hand poses were observed in all participants.
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Fig. 7. The hand poses analyzed in this study were
shown to occupy unique regions of a 3-dimensional
synergy-space (Fig. 6), implying that the hand poses
were ‘composed’ of varying combinations of the three
synergies. In the above figure, this is further clarified
by showing the average proportions of each synergy
that composed poses. This result further illustrates
the separability of hand poses in the synergy-domain.
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Fig. 8. Systematic reduction in synergy activation between
fatigue trials one and three is clearly evident in 3D
space of synergies. Above, the view of the 3D plot is
limited to two axes to illustrate this trend.



4. DISCUSSION

In this study, the presence of neuromuscular fatigue was
investigated in the time-frequency- and synergy-domain
for five subjects performing a power grasp hand pose
three times in 60 second intervals. Further, the synergy-
domain separability of four common hand poses repeated
over 30 second trials was studied. The results of this
study indicated that while layers of analysis including
data segmentation, network- or learning-based classifica-
tion, and spectral analysis are required to provide time-
frequency sEMG metrics robust to fatigue (Britt et al.
(2021); Madden et al. (2021)), low-dimensional synergy-
domain metrics remain robust to fatigue (Figs. 5,6).

4.1 Outcomes of this study

In analyzing muscle fatigue, time-frequency analysis indi-
cated that signal energy, a marker of fatigue, increased
from the first to the third trial for all muscles as-
sessed (Fig 4). Less change was observed for the EDC
muscle, as expected for the flexion-based hand poses ex-
amined. The observed increase indicated occurrence of
fatigue (Madden and Deshpande (2017)), however with-
out force and kinematic sensing, it can’t be differentiated
from changes in pose, or other neuromuscular impair-
ment (Torres-Oviedo and Ting (2010)).

By contrast, analysis in the synergy-domain described
systematic neuromuscular adaptations taken by the motor
cortex in response to fatigue. In this domain, 3x600 sEMG
vectors produced 3x3 synergy excitation vectors represent-
ing excitation of three synergies and 3x60 excitation prim-
itive vectors representing the three synergy primitives,
where three synergies accounted for an average of 85.51%
of signal variance (VAF) with maximum mean squared
approximation error of less than 1% (Santello et al. (1998);
Mason et al. (2001); Jarque-Bou et al. (2019); Zhao et al.
(2021)). Synergy excitation to the muscles decreased for
every participant from trial one to trial three (Fig 5),
indicating an automatic response to fatigue between the
first, second, and third trials. This was consistent with the
time-frequency and self-reported metrics.

In analyzing gestures, synergy activation coefficients were
mapped in a 3-dimensional space, where trends in activa-
tion were clearly discernable. As summarized graphically
(Fig. 6), the space of synergies illustrated well-separable
features that retained their integrity in the presence of
muscle fatigue (Fig. 8). These results indicate that hand
pose variations are achieved through trackable changes in
synergy excitation, a coherent motor control strategy that
is consistent and distinguishable.

The structure of the synergy primitives were very sim-
ilar between participants and did not vary significantly
between fatigue trials (Fig. 5,7). This indicates that the
response of the central nervous system to fatigue did not
include re-organization of underlying motor primitives,
but rather that adaptation to neuromuscular fatigue was
limited to the amplitude of the excitation delivered to
these primitives. This result is consistent with the liter-
ature (Ortega-Auriol et al. (2018)), and suggests the re-
peatability of synergy domain analysis for fatigue estima-
tion (Zhao et al. (2021); Torres-Oviedo and Ting (2010)).

4.2 Exoskeleton Control Implications

To maximize desirable human-only dynamics, thermal and
electrical efficiency, and robot functional lifespan, sEMG-
based control may be structured in minimally-assist,
assist-as-needed, shared-autonomy, and other optimal-
control paradigms. Such control schemes are especially
relevant in remote environments, such as in astronaut
EVAs (Gernhardt et al. (2008); Madden and Deshpande
(2017)), and rehabilitation applications (Boyasab and
Guévela (2011)). Neuromuscular fatigue can reduce sEMG
classification accuracy in such control architectures (Lin
et al. (2020); Zeng et al. (2021); Madden et al. (2021)).

In this work, we have demonstrated the utility of synergy-
domain metrics including activation coefficients of individ-
ual muscle synergies in characterizing fatigue and move-
ment intent. We thereby suggest that synergy activation
coefficients can be used as control inputs for fatigue and
intent assessment and classification. This approach could
establish exoskeleton control that is robust to fatigue.

4.3 Limitations

In this study, redundancy in data analysis through
kinematic, psychophysical, time-frequency, and finally
synergy-domain analysis provides confidence in our claims.
However, this pilot study has limitations which may im-
pact the clarity of the results presented. Firstly, we used
the commonly sourced bulb dynamometer which had mini-
mal deformation during hand poses. However, as it is com-
pliant, some non-uniform grasp dynamics may be present
between participants. This could be addressed through
repetition of the trials with purely rigid instrumentation.
Further, we did not assess fatigue across multiple poses,
but only power grasp.

4.4 Future Work

To build upon the results presented in this manuscript,
future work should include exploring the conclusions re-
ported above, as well as toward implementing these results
in hand exoskeleton control. These steps include evalua-
tion of the conclusions in truly isometric conditions with
specialized force-sensitive rigid instruments and through
repetition of this study across multiple hand grasps, and
across a wider demographic range. Concurrently, we are
working to implement online sEMG-based control using
synergy-domain metrics in fatigue contexts and in activi-
ties of daily living.

5. CONCLUSION

In this work, we show that the reduction in the excitation
of three dominant muscle synergies provides a reliable way
to quantify hand muscle fatigue, as well as movement
intent, and that these trends trends remain observable and
retain their integrity in the presence of hand neuromuscu-
lar fatigue. By comparing these results across trials and
across participants (Fig. 5), we show that this phenomenon
represents a systematic neuromuscular control strategy to
account for fatigue, which can be tracked, quantified, and
utilized for exoskeleton control.



We illustrate these metrics (Fig. 6, 7, 8) to provide con-
text regarding their separability in an experimental trial.
Through this analysis, we show that synergy domain char-
acterization of muscle activity is suitable for controlling
fatigue-aware robotic exoskeletons, representing a step to-
wards establishing reliable exoskeleton control for human
hand augmentation and assistance.
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