Mary Robbins, ‘09 and ’12 civil engineering
Assistant Research Professor
National Center for Asphalt Technology at Auburn University
Auburn, Alabama
Typical day . . . ranges from analyzing data, working on a report and documenting findings of an experiment, to being on-site to see the construction of pavement test sections, teaching a class, working with a graduate student, attending conferences or presenting the details of a research project. We also conduct outreach and training courses here at NCAT, so I may be presenting information to other engineers in a classroom environment. My main project, pavement preservation, has a number of sponsors and has garnered a lot interest, which means I am often answering questions or giving tours of the project site or presentations to various stakeholders.
Current projects . . . my primary research project looks at different pavement preservation treatments, such as chip seals, crack sealing or thin asphalt overlays, to try to understand how much these different types of treatments can extend pavement life. We know if we maintain our cars with oil changes and rotating tires, they will last longer, so it seems intuitive that preventive maintenance will help extend the life of the pavement. However, there has not been much research in terms of quantifying the number of years that each treatment can elongate pavement life, and that’s the gap we hope to fill with this research. We are in a situation where we are no longer building roads at the rate that we once were; rather, we are left maintaining an expansive infrastructure with limited funds. This research will be beneficial to agencies in helping them make decisions about maintaining their roadways.
Engineering challenge . . . my research encompasses a number of different pavement preservation treatments, and it really is the first large-scale project of its kind. We are constantly learning as we go and having to develop new methods for analyzing the data, while trying to keep it in context so we have results that can be implemented. That is always a challenge – the scale we work on and the tools and resources we have as researchers are not the same as the engineers that are putting things into practice. It is important that what we develop is something that advances our field but can be implemented on a larger scale while not being overly time consuming or costly.
My Auburn Engineering . . . I had some fantastic opportunities as a graduate student at Auburn. I was fortunate to find an adviser that gave me lots of room to grow while providing me the instruction that I needed, and also granted me some unique opportunities. I was able to travel to many places — both domestic and international — as part of various research projects and to present and attend conferences. Working with my adviser and other graduate students as a team to install instrumentation in the NCAT Pavement Test Track was critical to the research we were conducting. All of these experiences helped shape me as an engineer and gain the knowledge and confidence I needed to succeed as a researcher. Adding to that was the experience I had with Engineers Without Borders, using appropriate technology to develop engineering solutions for a village high in the Andes mountains of Bolivia. That experience truly breathed life into the Auburn Creed for me.
Early years . . . I wanted to be a fashion designer, which is comical considering I am far from being a fashionista now. I had to make some decisions during my senior year of high school in terms of classes, and I realized that what led me to fashion design was that I liked to take clothes and make them better — to make them fit me (I am pretty tall!) and my personality. That’s when I realized what I really liked was the problem solving. I had always enjoyed math and science, so I chatted with my physics teacher and I decided at that time to pursue engineering.
Turning point . . . as an undergraduate student I enjoyed classes, but I had not found the one area of civil engineering I loved. My junior year I was a co-op student for Wright Patterson Air Force Base. One day I was out on the airfield helping lay new pavement markings for larger cargo planes that were set to arrive soon, when I watched the airmen load a C-130 with a Humvee and other supplies. That is when my mind just started spinning with questions. This cargo plane was on an asphalt apron — which instinctively when you look at asphalt you get the sense that it is flexible — but it is obviously stiff enough to carry heavy loads. So I started asking how thick the apron had to be to support a cargo plane of that size and weight, and how those decisions were made. My mentor didn’t have answers for me other than using a standard thickness based on experience. That was just not good enough for me; I needed to know more about asphalt! That experience really set things in motion for me.